F. QM TISE is an Eigenvalue Problem: The Hamiltonian Operator

TDE
$$
\underbrace{\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial\alpha^2} + U(x,t)\right]}\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t} \quad \text{general}
$$

$$
\widehat{H}\Psi = i\hbar \frac{\partial}{\partial t}\Psi
$$

$$
For U = U(x) only. \left[\frac{-\frac{1}{2m} \frac{d^{2}}{dx^{2}} + U(x)\right] \psi(x) = E \psi(x)
$$
\n
$$
\boxed{TISE} \qquad \qquad \boxed{\hat{H} \psi = E \psi}
$$

\n- Time-independent Schrödinger Equation is an eigenvalue problem of an operator
$$
\hat{H} = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + U(x)
$$
 [1D case]
\n

Recall: Schrödinger (1926) solved his $\hat{H}\mathcal{\mathcal{\psi}}$ = $E\mathcal{\mathcal{\psi}}$ for H-atom, 1D oscillator, rotator and found that E are the allowed energies of a system and ψ_{ε} are the states (wavefunctions) of definite energies ε

•• Expect $\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + U(x)$ to be related to the
total energy of a system

What is that \hat{H} ? A recipe to corite down \hat{H} for a quantum problem " \hat{H} is called the "Hamiltonian Operator" on simply "Hamiltonian" " Hamiltoniare comes from classical mechanics - Hamilton's Mechanics

A minimal Picture of Classical Mechanics (physics is one big coherent subject)

[#] Classical Mechanics

\n- \n
$$
\blacksquare
$$
 Newton (1686) "Principia" $F = m \frac{d^2x}{dt^2}$ \n
\n- \n \blacksquare Lagrange (1797) "Analytic Mechanics" $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$ Euler-L(x, \dot{x})\n
\n- \n \blacksquare Hamilton (1834) "On a general method on dynamics"\n
\n- \n \blacksquare Hamilton's equations\n
\n- \n \blacksquare Hamilton's equations\n
\n- \n \uparrow Hamiltonian\n
\n- \n \downarrow Hamiltonian\n
\n- \n

This page is meant to be formal – You *don't* need to go through these steps in most problems

But this will justify the sequence of learning: Classical Mechanics -> Quantum Mechanics Given a problem (thus some U(x) on some force) [we are doing classical mechanics] 4. Identify coordinate x (called generalized coordinate) 2). Construct Lagrangian L(x, ž) $3/6$ Define momentum from L via $p = \frac{\partial L}{\partial x}$ (conjugated momentum) conjugate to coordinate x 4. Construct $H(x, \rho) = \rho x - L$ 5 . Then we have $H(x, p)$ formally, this is the Hamiltonian it is a function of coordinate x and momentum p C of coordinates x, y, z and momenta p_x, p_y, p_z)

26 *Don't worry* if your background doesn't fill in this page, **start with H directly is fine (next page)**

Practical Recipe: Writing A

Step 1: Think Classical first

For most problems, H is the total energy and H = H(x,p)
\ni.e. H = T + U = kinetic energy + Btential energy
\n
$$
\Rightarrow H = \frac{p^2}{2m} + U(x)
$$
\nsame for
\nall 10 problems

Example: A particle *m* confined by a harmonic potential (1D oscillator)

$$
H(x, p) = \frac{p^2}{2m} + \frac{1}{2}Kx^2
$$

Up to this point, it is classical mechanics

Step 2: Go Quantum (this is the most important step)

(Position operator) (Momentum operator)" Thus H becomes a Hamiltonian operator \hat{H} $\hat{H} = \frac{\hat{\rho}^2}{2m} + U(\hat{x})$

The call x and p come in a pair (formally through
$$
p = \frac{\partial L}{\partial x}
$$
)
To get Schrödinger Equation:
Substitute: $\hat{x} \rightarrow x$: $\hat{p} \rightarrow \frac{\hbar d}{i dx}$ (crucial step into QM)

$$
^{+}Recall: \ \ \hat{p} \ \hat{p} = \hat{p}^{2} \ , \ \ \cup (\hat{x}) \ \text{means} \ \text{for every} \ x \ \text{in} \ \cup (x) \ \text{, then it \ into} \ \hat{x} \ \
$$

\n- Then
$$
\hat{H}
$$
 becomes $\hat{H} = \frac{-k^2}{2m} \frac{d^2}{dx^2} + U(x)$
\n- Since $\hat{H} = \frac{-k^2}{2m} \frac{d^2}{dx^2} + U(x)$
\n- Since $\hat{H} = \hat{H} = \hat{H}$

Done! Steps 1 & 2 allow you to write down the QM equations for any system. See Sample Questions and Problem Set 2 for practices.

Step 1 H = T + U(x, y, z) =
$$
\frac{\beta_x^2}{2m} + \frac{\beta_y^2}{2m} + \frac{\beta_z^2}{2m} + U(x, y, z)
$$

\nStep 2 Cordinate \Leftrightarrow momentum pairs: $x \Leftrightarrow \beta_x$, $y \Leftrightarrow \beta_y$, $z \Leftrightarrow \beta_z$

\nSo, $\frac{dy}{dx}$ from \Leftrightarrow $\hat{x} \rightarrow x$ $\hat{y} \rightarrow y$ $\hat{z} \rightarrow z$

\n $\hat{y} \rightarrow \frac{\hbar}{2} \frac{\partial}{\partial x}$ $\hat{y} \rightarrow \frac{\hbar}{2} \frac{\partial}{\partial y}$ $\hat{y} \rightarrow \frac{\hbar}{2} \frac{\partial}{\partial z}$

\n $\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + U(x, y, z)$

\nNone

\n $\hat{H} \cdot \frac{\partial}{\partial x} \cdot \frac{\partial}{\partial y} \cdot \frac{\partial}{\partial z} \cdot \frac{\partial$

Example: Harmonic Oscillator

\n
$$
\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}K\hat{x}^2
$$
\nk.e. potential energy function

\n
$$
\hat{R} = \hat{p}^2 + \frac{1}{2}K\hat{x}^2
$$
\n
$$
\hat{p} = \hat{p}^2 + \frac{1}{2}K\hat{x}^2
$$
\n
$$
\hat{p} = \hat{p}^2 + \frac{1}{2}K\hat{x}^2 + \frac{1}{2
$$

Example: 3D harmonic Oscillator

\n
$$
\hat{H} = \frac{\hat{p}^2 + \hat{p}^2 + \hat{p}^2}{2m} + \frac{1}{2}K(\hat{x}^2 + \hat{y}^2 + \hat{z}^2)
$$
\n
$$
\hat{x} \rightarrow x, \ \hat{p}_x \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x} \quad , \ \hat{y} \rightarrow y, \ \hat{p}_y \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial y} \quad , \ \hat{z} \rightarrow z, \ \hat{p}_z \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial z}
$$
\n75SE is

\n
$$
\hat{H}\psi = E\psi \quad \text{or} \quad \frac{\hbar^2}{2m(\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})\psi(x, y, z) + \frac{1}{2}K(x^2 + y^2 + z^2)\psi(x, y, z) = E\psi(x, y, z)
$$

One implication
\n
$$
H(x,p) = \frac{p^2}{2m} + U(x)
$$
 [Reviewe $\Rightarrow TISE]$
\nT (kinetic energy)
\n $T = \frac{p^2}{2m} = \frac{1}{2}mv^2$ Newtonian, Mechanics
\n \therefore Schrödinger Equations : Non-relativistic Quantum Mechanics

Remarks: We will do non-relativistic QM in our course.

You may wonder how to do relativistic QM. That's "easy"! How about starting with E^2 = m^2c^4 + c^2p^2 and following the recipe? Klein, Gordon, and Dirac did just that and their equations are the starting points of relativistic QM

Making connections: Recall that…

Want to look for states of definite (some quantity) and values of (that quantity) & Solve eigenvalue problem of (that quantity's) operator

Now that (some quantity) is the total energy of a system

Want to Look for states of definite energies and the values of energy? Solve the eigenvalue problem of the total energy operator. Hamiltonian H

No wonder $\hat{H}\psi(x) = E\psi(x)$ gives the energy eigenfunctions
(states of definite energies) and the energy eigenvalues (allowed energies
of the system) This is what TISE does